Neural network design for J function approximation in dynamic programming
نویسندگان
چکیده
This paper will show that a new neural network design can solve an example of difficult function approximation problems which are crucial to the field of approximate dynamic programming(ADP). Although conventional neural networks have been proven to approximate smooth functions very well, the use of ADP for problems of intelligent control or planning requires the approximation of functions which are not so smooth. As an example, this paper studies the problem of approximating the J function of dynamic programming applied to the task of navigating mazes in general without the need to learn each individual maze. Conventional neural networks, like multi-layer perceptrons(MLPs), cannot learn this task. But a new type of neural networks, simultaneous recurrent networks(SRNs), can do so as demonstrated by successful initial tests. The paper also examines the ability of recurrent neural networks to approximate MLPs and vice versa.
منابع مشابه
Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملA dynamic bi-objective model for after disaster blood supply chain network design; a robust possibilistic programming approach
Health service management plays a crucial role in human life. Blood related operations are considered as one of the important components of the health services. This paper presents a bi-objective mixed integer linear programming model for dynamic location-allocation of blood facilities that integrates strategic and tactical decisions. Due to the epistemic uncertain nature of ...
متن کامل